Optimal Estimation of Multidimensional Normal Means with an Unknown Variance
نویسندگان
چکیده
Let X ∼ Np(θ, σIp) and W ∼ σχm, where both θ and σ are unknown, and X is independent of W . Optimal estimation of θ with unknown σ is a fundamental issue in applications but basic theoretical issues remain open. We consider estimation of θ under squared error loss. We develop sufficient conditions for prior density functions such that the corresponding generalized Bayes estimators for θ are admissible. This paper has a two-fold purpose: 1. Provide a benchmark for the evaluation of shrinkage estimation for a multivariate normal mean with an unknown variance; 2. Use admissibility as a criterion to select priors for hierarchical Bayes models. To illustrate how to select hierarchical priors, we apply these sufficient conditions to a widely used hierarchical Bayes model proposed by Maruyama & Strawderman [M-S] (2005), and obtain a class of admissible and minimax generalized Bayes estimators for the normal mean θ. We also develop necessary conditions for admissibility of generalized Bayes estimators in the M-S (2005) hierarchical Bayes model. All the results in this paper can be directly applied in the familiar setting of Gaussian linear regression.
منابع مشابه
BAYES ESTIMATION USING A LINEX LOSS FUNCTION
This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملOPTIMAL SELECTION OF NUMBER OF RAINFALL GAUGING STATIONS BY KRIGING AND GENETIC ALGORITHM METHODS
In this study, optimum combinations of available rainfall gauging stations are selected by a model which is consist of geo statistics model as an estimator and an optimized model. At the first, watershed is approximated to several regular geometric shapes. Then kriging calculates the variance &nbs...
متن کاملDensity Estimation with Normal Measurement Error with Unknown Variance
Abstract: This paper deals with the problem of estimating a density based on observations which are contaminated by a normally distributed error whose variance is unknown. In the case of a completely unknown error variance, the impossibility of a uniformly consistent estimation is shown; however, a semi-uniformly consistent estimator is constructed under nonparametric smoothness conditions on t...
متن کاملEstimating and Clustering Curves in the Presence of Heteroscedastic Errors
The technique introduced in this paper is a means for estimating and discovering underlying patterns for a large number of curves observed with heteroscedastic errors. Therefore, both the mean and the variance functions of each curve are assumed unknown and varying over time. The method consists of a series of steps. We transform using an orthonormal basis of functions in L2. In the transform d...
متن کامل